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Abstract

This paper investigates how dynamic correlations in exchange rate returns affect the optimal
portfolio choice of risk-averse investors. We use a set of multivariate models based on the Dy-
namic Conditional Correlation (DCC) model and take a Bayesian approach in estimation and
asset allocation. In assessing the economic value of correlation timing, our analysis accounts for
parameter and model uncertainty as well as Bayesian learning. We design dynamic strategies for
active management of currency portfolios, and find substantial economic value in timing correla-
tions in addition to the economic gains from volatility timing. This result is robust to reasonable
transaction costs as well as parameter and model uncertainty, asymmetric correlations, and al-
ternative specifications for correlations and volatilities; it is not robust, however, to the portfolio
rebalancing frequency as the large economic gains of correlation timing at the daily frequency
dissipate almost entirely for weekly or monthly rebalancing.
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1 Introduction

Expected correlations between asset returns are a critical input in the optimal portfolio choice of
risk-averse investors. Furthermore, there is considerable empirical evidence that return correlations
change over time.! However, forecasting the dynamics of correlations requires estimation of suitable
multivariate models, which are notoriously complicated and difficult to handle. This has spurred a
large body of empirical research exploring tractable multivariate models of time-varying volatility.
Among them, the Dynamic Conditional Correlation (DCC) model (Engle, 2002) has emerged as a
benchmark as it provides a parsimonious and flexible framework for modeling the dynamics of asset
return volatilities and correlations. Hence, it can be readily used in realistic applications of dynamic
asset allocation.

This is the first paper to address an essential question that lies at the core of a long line of
research in empirical finance: does correlation timing matter for the optimal asset allocation of a
risk-averse investor and, if so, how? We thus provide a comprehensive analysis of the extent to
which dynamic return correlations affect the optimal portfolio choice of risk-averse investors. Our
analysis contributes to the literature on the economic value of volatility timing, which for the most
part treats the impact of dynamic correlations as an afterthought; in some cases, correlations are
assumed constant (e.g., Della Corte, Sarno and Tsiakas, 2008), and in other cases they are modelled
using rolling estimators (e.g., Fleming, Kirby and Ostdiek, 2001), but in no case is the effect of
correlation timing separately evaluated from that of volatility timing.

Our empirical investigation begins by estimating a large set of multivariate specifications based
on the DCC model. In doing so, we take a Bayesian approach in estimation and asset allocation. This
allows us to make a further contribution to the literature by evaluating correlation timing in a way
that recognizes the role of both parameter and model uncertainty. In the process, we also assess the
impact of other important aspects of portfolio choice, such as transaction costs, rebalancing frequency,
the choice of utility function, asymmetry in correlations, and richness of correlation dynamics.

The analysis of this paper focuses on the foreign exchange (FX) market by making use of 31 years
of daily returns data from four major US dollar nominal spot exchange rates. As the largest financial
market in the world, the FX market is geographically dispersed with a uniquely international dimen-

sion.> More importantly, it is a natural market to study correlations as investors trade currencies

'See, for example, Erb, Harvey and Viskanta (1994), Longin and Solnik (1995, 2001), Ball and Torous (2000),
Campbell, Lettau, Malkiel and Xu (2001), Ang and Bekaert (2002), Goetzmann, Li and Rouwenhorst (2005), and
Cappiello, Engle and Sheppard (2006).

?See, for example, Bollerslev, Engle and Wooldridge (1988), Diebold and Nerlove (1989), Harvey, Ruiz and Shephard
(1994), Engle and Kroner (1995), Ledoit, Santa-Clara and Wolf (2003), Fiorentini, Sentana and Shephard (2004), Chib,
Nardari and Shephard (2006), Philipov and Glickman (2006), and Gourieroux, Jasiak and Sufana (2008).

#The FX market has an average daily volume of transactions exceeding US $3 trillion (see Bank of International
Settlements, 2007).



but all prices are quoted relative to a numeraire. For example, consider the case where the US dollar
is the numeraire relative to which exchange rates are quoted. Other things being equal, a shock in
the US economy will move the US dollar in the same direction relative to all other currencies, thus
generating positive correlation in all dollar exchange rates. Therefore, the consequence of pricing
relative to a numeraire is the tendency of FX correlations to be positive. More generally, correlations
between exchange rate returns will change over time due to variation in global and country-specific
fundamentals as well as other factors that are specific to the FX market, such as the intervention of
policy makers aimed at influencing a particular basket of exchange rates.

There are also practical reasons why focusing on the FX market makes our analysis more com-
pelling. In particular, we assess the relative economic value of correlation and volatility timing
without modeling exchange rate returns as a function of state variables. This is equivalent to spec-
ifying a random walk model for the spot exchange rate, which in turn is consistent with the vast
majority of the empirical FX literature since the seminal contribution of Meese and Rogoff (1983).*
Furthermore, transaction costs for professional investors in the FX market are very small (no more
than 2 basis points), and currency hedge funds typically invest in a small number of currencies taking
both long and short positions. Finally, in recent years investors can directly trade on FX correlations
using an increasingly popular contract called the correlation swap.”

The key distinguishing feature of our analysis is the use of economic criteria. While there is an
extensive literature on statistically evaluating the performance of correlation models, there is little
work in formally assessing the economic value of correlation timing.® A purely statistical analysis of
correlation timing is not particularly informative to an investor as it falls short of measuring whether
there are tangible economic gains from implementing dynamic correlations in active portfolio man-
agement. This motivates our asset allocation approach, which extends previous studies of volatility
timing in asset returns by West, Edison and Cho (1993), Fleming, Kirby and Ostdiek (2001), Mar-
quering and Verbeek (2004), Han (2006), and Della Corte, Sarno and Tsiakas (2008). We evaluate

the dynamic allocation strategies using a constant relative risk aversion (CRRA) utility function,

*On the one hand, Meese and Rogoff (1983) find that exchange rate returns are not predictable since models that
condition on economic fundamentals cannot outperform a naive random walk model. On the other hand, numerous
empirical studies consistently reject the uncovered interest parity condition suggesting the lack of a meaningful economic
relation between interest rate differentials and future exchange rate returns (e.g., Engel, 1996). These findings justify
the widespread use of the random walk model as the basis of carry trade FX strategies that borrow in low interest rate
currencies and lend in high interest rate currencies.

’In exchange for a fixed payment, a correlation swap pays the average realized correlation on a basket of securities.
A dispersion trade, widely used by hedge funds and proprietary traders, can also attain similar exposure to correlation
risk by taking a position in an index (option) and the opposite position in all components of the index (option).

SEngle and Sheppard (2001) examine the return volatility of global minimum variance portfolios implied by the DCC
model, but do not explicitly measure the utility cost of constant conditional correlations. Engle and Colacito (2006)
introduce a set of formal statistical tests for comparing covariance estimators in the context of minimum volatility
allocation strategies. However, their study does not provide a utility evaluation of dynamically rebalanced portfolios
from the perspective of a risk-averse investor.



thus departing from the standard quadratic utility mean-variance setting adopted by the majority
of prior research in volatility timing. Ultimately, we measure how much a risk-averse investor is will-
ing to pay for switching from a static portfolio strategy based on the constant covariance model to
one that has dynamic conditional correlation and volatility in the presence of parameter and model
uncertainty.

We assess the economic value of correlation timing in a Bayesian framework, which allows us to
explicitly account for the fact that the true extent of correlation timing in FX returns is uncertain.
Since the correlation forecasts are not known with complete precision, the presence of estimation
error will make the resulting allocation suboptimal. The Bayesian portfolio choice literature suggests
that we can account for parameter uncertainty by evaluating expected utility under the investor’s
predictive posterior distribution. This holds because the predictive distribution is determined by
historical data and the prior, but does not depend on the parameter estimates (e.g., Kandel and
Stambaugh, 1996; Barberis, 2000; Kan and Zhou, 2007; and Skoulakis, 2007). We can thus examine
the effect of parameter uncertainty on asset allocation by comparing, on the one hand, the “plug-in”
method that replaces the true parameter values by their estimates with, on the other hand, the
Bayesian approach that integrates estimation risk into the analysis. Finally, the dynamic nature
of the portfolio choice problem implies that the predictive distribution changes each period as the
investor incorporates information contained in the new data realization into posterior beliefs. This
feature of the problem introduces the notion of Bayesian learning, which may affect the investor’s
portfolio holdings.

In line with the Bayesian approach of Avramov (2002), Cremers (2002), and Della Corte, Sarno
and Tsiakas (2008), we also evaluate the impact of model risk on correlation timing by exploring
whether portfolio performance improves when combining the forecasts arising from the large set of
models we estimate.” In fact, including the benchmark static covariance model, we estimate a total
of 46 model specifications, and then use them in optimally implementing Bayesian Model Averaging
(BMA). The BMA strategy accounts directly for uncertainty in model selection as it weighs all
conditional volatility and correlation forecasts by the posterior probability of each model. The
posterior probability is based on the marginal likelihood, and hence, it also accounts for parameter
uncertainty, while imposing a penalty for lack of parsimony (higher dimension).

To preview our key results, the performance of the dynamic allocation strategies suggests that
there is high economic value in timing the correlations of exchange rate returns. We find that an

international investor facing FX risk will pay a high performance fee for correlation timing over

"We estimate the parameters of the DCC model by designing a new Markov Chain Monte Carlo (MCMC) algorithm,
and thus contribute to the financial econometrics literature since the DCC model has yet to be estimated and evaluated
using Bayesian methods.



and above the case of volatility timing with constant correlations. This finding is robust to reason-
able transaction costs as well as parameter uncertainty, model risk, asymmetric correlations, and
alternative specifications for correlations and volatilities. However, this result holds only for daily
portfolio rebalancing as the economic value of correlation timing dissipates almost entirely for weekly
or monthly rebalancing. Furthermore, the simplest DCC specification examined here captures almost
all gains from timing correlations and volatilities in the context of asset allocation across currencies.
This is an important new finding that answers an essential question in the empirical finance literature
that over the years has developed increasingly sophisticated multivariate volatility models. In the
practice of currency management, therefore, forecasting correlations using the simplest DCC model
will significantly enhance the performance of optimally designed portfolios when rebalancing at daily
frequency.

The remainder of the paper is organized as follows. In the next section we lay out the multivariate
conditional correlation models and briefly explain the Bayesian estimation methods. Section 3 dis-
cusses the framework for assessing the economic value of correlation timing for a risk-averse investor
with a CRRA portfolio allocation strategy. The effect of parameter uncertainty and Bayesian learn-
ing on asset allocation is discussed in Section 4, while model risk and the construction of combined
forecasts are described in Section 5. Our empirical results are reported in Section 6. Finally, Section

7 concludes.

2 Dynamic Models for Correlation Timing

We model the dynamics of correlations and volatilities of exchange rate returns using a set of models
based on the Dynamic Conditional Correlation (DCC) model (Engle, 2002). The DCC model offers
an attractive multivariate framework for the study of correlation timing because it has the following
advantages: it is tractable and parsimonious with a low dimension of parameters; it is flexible and
can be generalized to account for asymmetric correlations, while ensuring that correlations are in the
[—1, 1] range; it provides for a positive-definite covariance matrix; and, finally, it is straightforward
to implement even when the number of assets is large.

In order to assess the relative economic value of correlation and volatility timing, we estimate
a set of multivariate models for dynamic correlations (such as the DCC model), each under a set
of univariate specifications for dynamic volatility (such as the GARCH model). In what follows we

describe the complete set of models we estimate.



2.1 The Set of Multivariate Models for Correlation Timing

We begin our formal description of the models by letting y: = (y1,4,...,yn,) denote the returns of

N assets at time t:

1/2
Yt = pg + Zt/ €, (1)
where 1, = (114, - - -, fty4)" is the vector of conditional means, ¥; is the conditional covariance matrix,
and &, = (€14,...,en,) s a vector of standard normal disturbances.®

As the primary focus of our study is the effect of dynamic correlation and volatility on asset
allocation, our analysis assumes a constant conditional mean u, = i for all models. This is equivalent
to specifying a random walk model for the spot log-exchange rate, which in turn is consistent with

most of the empirical FX literature (Meese and Rogoff, 1983; Engel, Mark and West, 2007).

2.1.1 The Static Benchmark

The Multivariate Linear Regression (M LR) model sets ¥; = X, and therefore, it is the static bench-
mark, which is equivalent to a multivariate random walk of log-exchange rates with a constant

covariance matrix.

2.1.2 The Constant Conditional Correlation model

The Constant Conditional Correlation (CCC') model (Bollerslev, 1990) assumes constant correlations

but dynamic volatilities. This model decomposes the conditional covariance matrix as follows:
¥ = DiRDy, (2)

Dy =diag{o14,...,0N+}, (3)

where Dy is the N x N diagonal matrix of dynamic conditional volatilities, and R is the N x N matrix
of unconditional correlations. The conditional volatilities can have any of the specifications discussed
in Section 2.2 below. The main feature of the CC'C model is that the dynamics of covariances are

governed exclusively by the dynamics of volatilities since correlations are constant.

2.1.3 The Dynamic Conditional Correlation model

The Dynamic Conditional Correlation (DCC') model (Engle, 2002) assumes dynamic correlations in

addition to dynamic volatilities by decomposing the conditional covariance matrix as follows:
Yy = DiRy Dy, (4)

Dt = dzag {Ul,ta Ce ,O'N’t} 5 (5)

8For recent studies which generalize the conditional normality assumption of the DCC model see Bauwens and
Laurent (2005) and Jondeau and Rockinger (2008).



Ry = (diag {Q:})""/* Qi (diag {Q:}) /2, (6)
Qi =(R—T'RT — A'RA) + Tz 12, T+ ANQ; 1A, (7)

where Dy is the N x N diagonal matrix of dynamic conditional volatilities, R; is the N x N symmetric
matrix of dynamic conditional correlations, R is the N x N matrix of unconditional correlations,
Q: is an N x N symmetric positive-definite matrix, I' and A are IV x N parameter matrices, and
z = D;lut ~ N(0, R;), where u; =y — 1.

The simplest version of the DCC model reduces I' = v and A = ¢, where {v,0} are scalars,
which are the same for all assets ¢ < N. In other words, this “scalar” DCC model assumes that
the dynamics of all correlations are driven by the same two parameters {7,0}. A less parsimonious
variant of the scalar DC'C model results when the matrices I' and A are assumed to be diagonal:
I' = diag{vy,..,7n} and A = diag{d1,...,0n}. The diagonal DCC model allows for distinct
dynamics in each correlation process but requires estimation of more parameters. We estimate both

scalar (denoted simply as DCC) and diagonal (DCCyiag) specifications.

2.1.4 The Asymmetric Dynamic Conditional Correlation model

The Asymmetric Dynamic Conditional Correlation (ADCC) model (Cappiello, Engle and Sheppard,

2006) further allows for asymmetric correlations by generalizing Equation (7) as follows:
Qt = (R - F/RI‘ - A,EA - H,FH) + F’zt,lzé_lf + A,QtflA + H'pt,lpg_lﬂ, (8)

where I', A and IT are N x N parameter matrices; p, = I [z; < 0] o z;, where I [-] is an indicator
function taking the value 1 if the argument is true and 0 otherwise, and o indicates the Hadamard
product; P = E [pyp}]. For example, the symmetric scalar DCC model (the simplest DCC model
we consider) is obtained as a special case of the ADCC model when I' = 7, A = § and IT = 0. As
with the DCC model, we estimate both scalar (ADCC) and diagonal (ADCClyjqg4) specifications.
The ADCC model is motivated by numerous empirical studies showing that return correlations
may be asymmetric as they tend to increase in highly volatile bear markets (e.g., Longin and Solnik,
2001; Ang and Chen, 2002). This has important implications for optimal asset allocation, and for
example, casts doubt on the benefits of international diversification (e.g., Ang and Bekaert, 2002; Das
and Uppal, 2004). When asset returns tend to be more volatile, investors have a stronger incentive to
diversify, but it is precisely in these cases that correlations are high and diversification opportunities
are low. In other words, asymmetric return correlations cause diversification opportunities to be least

available when they are most needed.? In this context, the ADCC model allows us to determine the

9Recent work in empirical asset pricing shows that asymmetric correlation risk is priced in the sense that assets
which pay off well when market-wide correlations are higher than expected earn negative excess returns. The negative
excess return on correlation-sensitive assets can therefore be interpreted as an insurance premium (e.g., Buraschi,
Porschia and Trojani, 2008; Driessen, Maenhout and Vilkov, 2008; Krishnan, Petkova and Ritchken, 2008).



possible impact of asymmetric correlations on asset allocation in the FX market.

2.2 The Set of Univariate Models for Volatility Timing

We evaluate the performance of a number of alternative univariate specifications for the conditional
variance, including some of the most popular models in the literature. The univariate volatility
models we consider are the same as in Cappiello, Engle and Sheppard (2006) and include the following:
GARCH (Bollerslev, 1986); AVGARCH (Taylor, 1986); NARCH (Higgins and Bera, 1992); EGARCH
(Nelson, 1991); ZARCH (Zakoian, 1994); GJR-GARCH (Glosten, Jagannathan and Runkle, 1993);
APGARCH (Ding, Engle and Granger, 1993); AGARCH (Engle, 1990); and NAGARCH (Engle and
Ng, 1993). For details on the full specification of these models, see Appendix A.

2.3 Pairwise Model Comparisons

In addition to the static benchmark M LR, the set of models comprises five competing dynamic
specifications {CCC, DCC, DCClgiqg, ADCC and ADCClgiqqg} under each of the nine univariate
volatility specifications listed above. In total, therefore, we estimate 46 model specifications.'’

The principal objective of our analysis is to provide an economic evaluation of the models de-
scribed above in the context of dynamic asset allocation strategies. We assess the economic value of
volatility timing simply by comparing the CCC' model to the static M LR. More importantly, we
measure the additional economic gains from correlation timing by comparing the DCC to the CCC
model. The models also allow us to assess whether there is economic value in imposing separate
dynamics on correlations (diagonal DCC' vs. scalar DCC'), whether correlation asymmetries are

important (ADCC vs. DCC'), and finally, whether the choice of a particular volatility specification

generates further economic gains.

2.4 Estimation and Forecasting

We perform Bayesian estimation of the parameters of all model specifications. The critical advantage
of the Bayesian methodology is that it provides a unified framework for estimation, forecasting and
model selection. In this application, it is particularly suitable for capturing the effect of parameter
and model uncertainty on asset allocation. A Bayesian approach also avoids the complication on
testing the null of constant correlation against the alternative of dynamic correlation that arises

due to lack of identification of the correlation decay parameters (see Engle and Sheppard, 2001).

10Gince our analysis focuses on exchange rates, we have also attempted to model the dynamic covariance between
two dollar exchange rate returns using the dynamic variance of the cross-rate. This is based on triangular no-arbitrage
and follows Andersen, Bollerslev, Diebold and Labys (2003) and Brandt and Diebold (2006). Despite the simplicity of
reducing estimation of multivariate covariances to a set of univariate volatility processes, this model cannot guarantee
that the dynamic covariance matrix is positive definite, and that correlations are in the [-1,1] range. Hence we have
excluded the triangular no-arbitrage model from our analysis.



Bayesian inference generally provides the posterior distribution of the parameters conditional on the
data, which holds for finite samples. The posterior distribution can in turn be used as an input in
forming Bayesian asset allocation strategies for an economically meaningful ranking of the models
that accounts for parameter and model uncertainty as well as Bayesian learning.

In this paper, we innovate by designing a new Markov Chain Monte Carlo (MCMC) algorithm for
Bayesian estimation of the DC'C model. The algorithm draws insights from the Bayesian univariate
GARCH algorithm of Della Corte, Sarno and Tsiakas (2008), and from the Bayesian stochastic
volatility algorithm of Kim, Shephard, and Chib (1998) and Chib, Nardari, and Shephard (2002,
2006). The Bayesian MCMC algorithm constructs a Markov chain whose limiting distribution is
the target posterior density of the parameters. The Markov chain is a Gibbs sampler in which
all parameters are drawn sequentially from their full conditional posterior distribution. The Gibbs
sampler is iterated 5,000 times and the sampled draws, beyond a burn-in period of 1,000 iterations,
are treated as variates from the target posterior distribution. Our Bayesian estimation approach
delivers a sample from the posterior distribution of the parameters, which is a key input to the
Bayesian asset allocation described in Section 4.

The MCMC algorithm for three representative multivariate models (M LR, CCC, ADCClyjqq)
is summarized in Appendix B. All other specifications are special cases of one of these models.
Each algorithm produces estimates of the posterior means of § = {u, 01 62}, where p = {y;} is the
unconditional mean of each series ¢ < N, 61 are the parameters of each univariate GARCH-type
volatility process, and @2 are the correlation parameters. For example, for the diagonal ADCClgy;qeq
model with GARCH volatility: 61 = {w;, a;, 5;} and 03 = {v,;,d;, m}. Setting N = 4 requires 28

parameter estimates.

3 The Economic Value of Correlation Timing

3.1 Dynamic Asset Allocation with CRRA Utility

We set up a dynamic asset allocation framework with Constant Relative Risk Aversion (CRRA)
utility for assessing the economic value of strategies that exploit predictability in correlations and
volatilities. Consider the portfolio choice at time ¢ of an investor who maximizes the expected end-of-
period utility by trading in every period N risky assets and a risk-free asset. This investor problem

is formally defined as follows (see, for example, Brandt, 2009):

‘/t(Wt’Zt) = {%%%lEt [U (WT)]
Tsfg—t
st. Wep1 = WiRpe1 Vs>t (9)



where Ry, 41 = (R5+1 — Rf) + R' is the gross portfolio return from time s to s + 1, z, is the
vector of portfolio weights on the risky assets chosen at time s, Rsy1 is the vector of gross returns
on the risky assets from time s to s + 1, R/ is the gross return on the risk-free asset, and Z; is
the information set available at time ¢. In this intertemporal portfolio choice problem, at date ¢ the
investor optimally chooses the portfolio weights z; conditional on having wealth W, and information
Zy¢, while taking into account that at every future date s the portfolio weights will be optimally
revised conditional on the then available wealth Wy and information Z,. The function V; (W, Z;) is
called the value function and denotes the expectation, conditional on information Z;, of the utility
of terminal wealth Wr generated by current wealth W; and the optimal portfolio weights {x} }ST;tl

The dynamic nature of this portfolio choice is best understood by expressing the multi-period

problem as a recursive single-period problem:

ViWi,z) = max B [U(Wrp)]

T—1
{IS}s:t

= maxF; { max Epyq [U (WT)]} (10)
v 1
= s (s o o (1 ) ) 1]}

The second equality follows from the law of iterated expectations and the third equality uses the
definition of the value function as well as the budget constraint. The recursive Equation (10) is the
Bellman equation.

Consider the case of CRRA utility, which is defined as follows:
Wy
1-X\’
where A denotes the coefficient of relative risk aversion (RRA). We can show that for CRRA utility

UWr) =

the Bellman equation simplifies to:

1-
Wy (2, (Rip1 — RY) + RO 1
Vi (Wi, Z:) = maxEy W (et t+11_x) J G By ]l (4 (Revs = BT) + )
TsSs=t+1 s=t+1
L ven) ¢t+1ert+1)

(11)
The CRRA utility function is homogeneous of degree 1 — X\ in wealth, which implies that the
solution is invariant to wealth. Hence, without loss of generality, we can set Wy = 1. It follows that

the value function depends only on the state variables as follows:
1
1—A

The corresponding first order conditions are:

0y (2) = maxPy |U (a1 (Reos = BT ) + RY) 0y (Zin)] - (12)

E, [aU (x; <Rt+1 - Rf) n Rf) Y1 (Zesr) (m+1 . Rf)} —0. (13)




3.2 Optimal Portfolio Choice

This intertemporal allocation problem does not have a simple and tractable solution as would be
the case in a mean-variance setting. We solve for the optimal portfolio choice using the method
developed by Brandt, Goyal, Santa-Clara and Stroud (2005). This is a simulation-based method for
solving discrete-time portfolio choice problems, which is general in that it allows for non-standard
preferences, a large number of state variables, and a large number of assets with arbitrary return
distributions. More importantly, the method allows us to directly use the correlation and volatility
forecasts from the models in computing the dynamic weights as well as extend our analysis to a
Bayesian setting where expected utility is evaluated under the posterior predictive density. The
Brandt et al. (2005) solution to the dynamic allocation problem is discussed in Appendix C.!!

Our analysis employs the set of models for conditional correlations and volatilities discussed
in Section 2. Since we are primarily interested in the relative economic value of volatility and
correlation timing, all models assume a constant mean for exchange rate returns, which is distinct
for each asset. By design, in this setting the optimal weights will vary across models only to the
extent that forecasts of the conditional correlations and volatilities will vary, which is precisely what
the empirical models provide. The benchmark against which we compare the model specifications is
the static-covariance model (M LR). In short, our objective is to determine whether in FX markets:
(i) there is economic value in conditioning on dynamic volatility, (ii) there is additional value in
conditioning on dynamic correlations, (iii) if so, which volatility and correlation specification works
best; (iv) whether parameter uncertainty and Bayesian learning have a significant impact on the
optimal allocation; and finally, (v) whether we can extract further economic gains by accounting for

model risk and constructing combined forecasts using Bayesian Model Averaging.

3.2.1 Performance Measures

At any point in time, one set of estimates of the conditional correlations and volatilities is better
than a second set if investment decisions based on the first set lead to higher utility. Alternatively,
the optimal model requires less wealth to yield a given level of utility than a suboptimal model.
Following Fleming, Kirby and Ostdiek (2001), we measure the economic value of the strategies by
equating the average utilities for selected pairs of portfolios. Suppose, for example, that holding a
portfolio constructed using the optimal weights based on the M LR model yields the same average
utility as holding the DC'C optimal portfolio that is subject to daily expenses ®, expressed as a

fraction of wealth invested in the portfolio. Since the investor would be indifferent between these two

"UNote that there is one important difference in our approach and the solution of Brandt et al. (2005). Since we
directly estimate the conditional moments, we do not need to run regressions across simulated sample paths, and hence,
our solution is slightly simpler.

10



strategies, we interpret ® as the maximum performance fee she will pay to switch from the M LR to
the DCC strategy. In other words, this utility-based criterion measures how much a CRRA investor
is willing to pay for conditioning on better dynamic correlation and volatility forecasts. To estimate

the performance fee, we find the value of ® that satisfies:

N
-

2_: E[U Ry = @) = ) E[U(Rpeia)], (14)
t=0 t

Il
o

where I}, is the gross portfolio return constructed using the expected return, volatility and corre-
lation forecasts from a competing dynamic model (such as the DCC model), and R, ;41 is the gross
portfolio return implied by the benchmark M LR model.

The most commonly used measure of economic value is the Sharpe ratio. However, as suggested
by Marquering and Verbeek (2004) and Han (2006), the realized Sharpe ratio can be misleading in
evaluating the performance of dynamic strategies because it is computed using the sample standard
deviation of realized portfolio returns, which overestimates the volatility of the portfolio returns
of a dynamic strategy. Furthermore, the Sharpe ratio is based on a notion of risk that ignores
higher moments and cannot quantify the exact economic gains of the dynamic strategies over the
static covariance strategy in the direct way of performance fees. Therefore, our economic analysis of

short-horizon exchange rate predictability focuses primarily on performance fees.

3.3 The Dynamic Strategies

We design an international strategy that involves trading the five major currencies (four exchange
rates) under investigation. Consider a US investor who builds a portfolio by allocating her wealth
between five bonds: one domestic (US), and four foreign bonds (UK, Germany, Switzerland and
Japan). At the beginning of each period, the five bonds yield a riskless return in local currency.
Hence the only risk the US investor is exposed to is FX risk.!?> Every period the investor takes
two steps. First, she uses each model to forecast the one-day ahead conditional correlations and
volatilities of the exchange rate returns. Second, conditional on the forecasts of each model, she
dynamically rebalances her portfolio by computing the new optimal weights that maximize utility.
This setup is designed to inform us whether using one particular conditional correlation and volatility
specification affects the performance of an allocation strategy in an economically meaningful way. In
assessing the relative economic value of correlation and volatility timing, we consider three portfolio
rebalancing frequencies: daily, weekly and monthly. The yield of the riskless bonds is proxied by
daily eurodeposit rates. Following Marquering and Verbeek (2004) and Han (2006) we set A = 6,

which produces portfolios with reasonable expected return and volatility. We report the estimates

12G¢trictly speaking, the return of investing in a risky asset is equal to the certain yield of the foreign bond plus the
uncertain exchange rate return (y:). The risk-free rate is equal to the yield of the US bond.
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of ® as annualized fees in basis points.

3.4 Transaction Costs

The impact of transaction costs is an essential consideration in assessing the profitability of trading
strategies. This is especially true here because the trading strategy based on the M LR benchmark

13 Therefore, we

is static, whereas the competing dynamic models generate dynamic strategies.
calculate the performance fees of the dynamic strategies relative to the static benchmark for the case
when the proportional transaction cost to the portfolio return is equal to 0, 1 and 2 basis points per
trading period. In foreign exchange trading, this is a realistic range for the level of transaction costs
as it roughly corresponds to 1 or 2 pips per currency unit.'* We follow the simple approximation of
Marquering and Verbeek (2004) by deducting the proportional transaction cost from the portfolio
return ex post. This ignores the fact that dynamic portfolios are no longer optimal in the presence
of transaction costs but maintains simplicity and tractability in our analysis.

We can avoid these concerns by calculating the break-even proportional transaction cost, 75,

that renders investors indifferent between two strategies (e.g., Han, 2006; Della Corte, Sarno and

Tsiakas, 2008). In comparing a dynamic strategy with the static strategy, an investor who pays

B BE

transaction costs lower than 75% will prefer the dynamic strategy. Since 7 is a proportional

BE

cost paid every time the portfolio is rebalanced, we report 77 in basis points at the rebalancing

frequency. For example, for daily portfolio rebalancing we report 75 in daily basis points.

4 Parameter Uncertainty and Bayesian Learning

Asset allocation theories typically assume that investors make optimal decisions with full knowledge
of the true parameters of the model. In practice, however, model parameters are not fixed at a known
value and instead have to be estimated. If there is estimation error, the resulting allocation will be
suboptimal. This gives rise to estimation risk in all empirical applications of the plug-in method that
replaces the true parameter values by their estimates. In contrast, the Bayesian approach to asset
allocation provides a general framework that integrates estimation risk into the analysis. Bayesian
analysis deals with parameter uncertainty by assuming that the investor evaluates her expected
utility under the predictive distribution, which is determined by historical data and the prior, but
does not depend on the parameter estimates.

We consider an investor who takes into account return predictability but is uncertain about the

'3The M LR model assumes a constant covariance matrix, and hence the optimal weights fluctuate only to the extent
that domestic and foreign interest rates vary over time.

“The typical transaction cost a large investor pays in the FX market is 1 pip, which is equal to 0.01 cent. For
example, if the USD/GBP exchange rate is equal to 2.0000, 1 pip would raise it to 2.0001 and this would roughly
correspond to 1/2 basis point proportional cost.
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parameters of the model. The Bayesian portfolio choice literature argues that in the presence of
parameter uncertainty, the unknown objective return distribution in the expected utility maximiza-
tion should be replaced with the investor’s subjective posterior return distribution reflecting the
information contained in the historical data and the investor’s prior beliefs about the parameters.
Using predictive distributions was pioneered by Zellner and Chetty (1965) and used among others
by Kandel and Stambaugh (1996), Barberis (2000), Kan and Zhou (2007), and Skoulakis (2007).
These studies demonstrate that parameter uncertainty is an important dimension of risk, which can
substantially affect the investor’s optimal allocation. For example, Barberis (2000) shows that for
a long-run investor the Bayesian solution is more conservative than the plug-in approach because
it implies taking smaller positions in the risky assets. Intuitively, the Bayesian approach explicitly
recognizes estimation risk as an additional source of risk, and therefore, the riskless asset becomes a

more attractive investment. Following Geweke (1989a), the predictive density of y;11 is given by:

p(Ys1 | y) = Ap(yt+179 | yt) O = /op(ytH | yt, 0) 7 (0) dO. (15)

When the portfolio allocation problem is intertemporal, the solution should take into account
the fact that the posterior distribution changes each period as the investor incorporates information
contained in the new data realization into posterior beliefs. This feature of the problem introduces
the notion of Bayesian updating or learning. Our dynamic asset allocation framework for assessing
the relative economic value of correlation and volatility timing separates the effect of parameter
uncertainty from that of learning. For instance, we can compare four different portfolio problems

corresponding to four different subjective data generating processes:

e No parameter uncertainty, no predictability: the investor takes the parameters as constant at
the point estimates and also treats means, volatilities and correlations as constant over time.

This is equivalent to using the M LR model in the plug-in asset allocation.

e No parameter uncertainty, predictability: the investor takes the parameters as constant at the
point estimates but allows for dynamics in volatilities and correlations. This is equivalent to

using the dynamic models in the plug-in asset allocation.

o Parameter uncertainty, no predictability: the investor takes into account parameter uncertainty
but does not learn from new data realizations (i.e., no predictability), as in Barberis (2000).

This involves using the M LR model in Bayesian asset allocation.

e Parameter uncertainty and predictability (Bayesian learning): the investor accounts for pa-
rameter uncertainty while learning about the return-generating process through the Bayesian
predictive density due to predictability in correlations and volatilities. This is equivalent to

using the dynamic models in Bayesian asset allocation.
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In short, our plan for understanding the effect of parameter uncertainty and Bayesian learning
on correlation timing is to compare, on the one hand, the allocation of an investor who uses the
predictive distribution in forecasting correlations with, on the other hand, the allocation of an investor
who ignores estimation error, sampling instead from the distribution of returns conditional on fixed
parameter estimates. As a result, this is the first paper to explicitly incorporate learning about

dynamic volatilities and correlations in a Bayesian multivariate asset allocation framework.

5 Model Risk and Combined Forecasts

Model risk arises from the uncertainty over selecting a model specification. Consistent with our
Bayesian approach, a natural criterion for resolving this uncertainty is the posterior probability of
each model, which has three important advantages: (i) it is based on the marginal likelihood, and
therefore accounts for parameter uncertainty, (ii) it imposes a penalty for lack of parsimony (higher
dimension), and (iii) it forms the basis of the Bayesian Model Averaging strategy discussed below.
Consider a set of K models Mj, ..., M. We form a prior belief 7 (M;) on the probability that
the 7th model is the true model, observe the returns data {y;}, and then update our belief that the

ith model is true by computing the posterior probability of each model as follows:

p(y | Mi)m (M)

Yy p(y | M) m (M)
where p (y | M;) is the marginal likelihood of the ith model defined as:
P M) = [p.0| My~ [p(10.30)7 (0| 25 ab. (7)

In Equation (16) above we set our prior belief to be that all models are equally likely, i.e. 7 (M;) =
%. Note that the marginal likelihood is an averaged (not a maximized) likelihood. This implies
that the posterior probability is an automatic “Occam’s Razor” in that it integrates out parameter
uncelrtaimty.15

Furthermore, the marginal likelihood is simply the normalizing constant of the posterior density
and (suppressing the model index for simplicity) it can be written as:

_ [y |6)=(0)

where f(y|#) is the likelihood, 7 (6) the prior density of the parameter vector 6, 7 (6 |y) the

(18)

posterior density, and @ is evaluated at the posterior mean.'6

15 Occam’s Razor is the principle of parsimony, which states that among two competing theories that make exactly
the same prediction, the simpler one is best.

'5Since 6 is drawn in the context of MCMC sampling, the posterior density 7 (6 | y) is computed using the technique
of reduced conditional MCMC runs of Chib (1995). For the parameters sampled in the MCMC chain by implementing
a Metropolis-Hastings algorithm, the posterior density is computed as in Chib and Jeliazkov (2001).
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5.1 Combined Forecasts

Since we do not know which one of the competing models is true, we also assess the performance
of combined forecasts proposed by the seminal work of Bates and Granger (1969). We design two
strategies based on a combination of forecasts for the conditional volatility and correlation of exchange
rate returns: the Bayesian Model Average (BM A) strategy and the Bayesian Model Winner (BM W)
strategy.!” In assessing the economic value of combined forecasts, we treat the BM A and BMW
strategies the same way as any of the individual models. For instance, we compute the performance
fee, ®, for the BM A one-step ahead forecasts of the conditional volatilities and correlations and
then compare them to the M LR benchmark. We perform this exercise for three universes of models:
(i) VOL is the universe of all GARC H-type univariate volatility specifications under the scalar
symmetric DC'C model (the simplest DC'C model we consider); (ii)) CORR is the universe of the five
multivariate correlation specifications (CCC, DCC, DCClgjqq, ADCC, ADCClyjqq) with GARCH
volatility; and (iii) FULL is the complete universe of all 46 models, including the benchmark M LR.
Consequently, our analysis of correlation timing further contributes to the empirical finance literature

by incorporating an economic view of both parameter and model uncertainty.

5.1.1 The BMA Strategy

In the context of our Bayesian approach, it is natural to implement the BM A method originally
discussed in Leamer (1978) and surveyed in Hoeting, Madigan, Raftery and Volinsky (1999). The
BM A strategy accounts directly for uncertainty in model selection, and is in fact straightforward
to implement once we have the output from the MCMC simulations. The BM A volatility and
correlation forecasts are simply a weighted average of the volatility and correlation forecasts across
the K competing models using as weights the posterior probability of each model defined in Equation
(16). Note that the BM A weights vary not only across models but also across time as does the
predictive density (and hence marginal likelihood) of each model. Finally, it is crucial to emphasize

that we evaluate the BM A strategy ex-ante.'®

5.1.2 The BMW Strategy

Under the BMW strategy, in each time period we select the set of one-step ahead conditional
volatilities and correlations from the empirical model that has the highest predictive density in that

¢

period. In other words, every period the BMW strategy only uses the forecasts of the “winner”

model in terms of predictive density, and hence discards the forecasts of the other models. Clearly,

'"See Timmermann (2006) for a review of forecast combinations.
18Tn practice, we do this by lagging the posterior probability of each model; see Della Corte, Sarno and Tsiakas
(2008) for further discussion.
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there is no model averaging in the BMW strategy. Similar to the BM A, the BMW strategy is

evaluated ex ante.

6 Empirical Results
6.1 Data and Descriptive Statistics

Our analysis employs daily returns data for four major US dollar nominal spot exchange rates over
the period of January 1976 to December 2006 corresponding to a total of 8,069 observations. The
exchange rates are taken from Datastream and include the UK pound sterling (USD/GBP), the
Deutsche mark/euro (USD/EUR), the Swiss frank (USD/CHF), and the Japanese yen (USD/JPY).
After the introduction of the euro in January 1999, we use the official euro-Deutsche mark conversion
rate to obtain the USD/EUR series. The weekly and monthly data we use for portfolio rebalancing
at these frequencies are generated by sampling the Tuesday FX rates for the weekly data and the
end-of-month rates for the monthly data.

Table 1 reports descriptive statistics for the daily percent exchange rate returns. For our sample
period, the means are near zero ranging from —0.0004 (or —0.1% per annum) for USD/GBP to
0.0117 (or 2.9% per annum) for USD/JPY. The daily standard deviations revolve between 0.620 for
USD/GBP (or 9.8% per annum) to 0.736 for USD/CHF (or 11.7% per annum). Skewness is negative
for two of the four FX returns, while kurtosis ranges from 6.02 for USD/EUR to 9.78 for USD/GBP.
Finally, Panel B of Table 1 shows the average return cross-correlations, which are strongly positive

ranging between 0.336 and 0.819.

6.2 Bayesian Estimation of Correlation Models

We begin our evaluation of correlation timing in exchange rate returns by performing Bayesian
estimation of the parameters of all models set out in Section 2. In addition to the static M LR
benchmark, the universe of models includes another 45 specifications: CCC, DCC, DCCljqq, ADCC
and ADCClgjqg, each under nine alternative GARCH-type volatility specifications.

Table 2 presents the posterior mean estimates for the parameters of the asymmetric diagonal
ADCCjqg model with GARCH innovations for daily, weekly and monthly returns. This is the most
general multivariate correlation specification we consider in our analysis. The table shows that both
volatilities and correlations are highly persistent for all four FX return series. This is a first indication
that correlations may be as predictable as volatilities. The persistence parameters are similar across
assets, while their value declines slightly as we move from daily to weekly, and then to monthly

frequency.'® Furthermore, the parameters {m;} indicating asymmetry in dynamic correlations are

Y For instance, in the case of the symmetric scalar DC'C model with GARC H volatility, the persistence in volatilities
is captured by o + 8, while the persistence in correlations is 42 + §2. The average a + 3 term across the four exchange
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small for all daily exchange rates, with the exception of the UK pound. Note that in our Bayesian
framework, we assess statistical significance by computing the Numerical Standard Error (NSFE) as
in Geweke (1989b). All parameter estimates exhibit very low NSFE values, and therefore, a high
degree of statistical significance.?’

With the parameter estimates at hand, we generate the correlation and volatility forecasts used in
the asset allocation. Figure 1 illustrates the daily volatility forecasts from the simple DCC—-GARCH

model, whereas Figure 2 shows the daily correlation forecasts from the same model. As expected,

conditional correlations appear to fluctuate over time as much as conditional volatilities.

6.3 Evaluating Correlation Timing in Asset Allocation

We assess the economic value of exchange rate correlation timing by analyzing the performance of
dynamically rebalanced portfolios constructed using the set of forecasts from the multivariate models.
Our forecasting analysis is conducted ex ante (i.e., using only lagged information) but in-sample for
three main reasons: (i) we estimate multivariate models for the returns of four exchange rates over a
long daily sample spanning 31 years and for three frequencies (daily, weekly, monthly); (ii) Bayesian
MCMC estimation is computationally demanding; and, more importantly, (iii) the universe of models
we consider is very large comprising 46 model specifications. Consequently, extending our analysis
out of sample (i.e., re-estimating the models period-by-period) is hardly feasible. Relying solely on
in-sample results does not capture the forecasting power a practitioner might have had in real time.
However, Inoue and Kilian (2004, 2006) provide a formal econometric analysis, which shows that both
in-sample and out-of-sample tests of predictability are equally reliable under the null hypothesis of no
predictability. In fact, their analysis concludes that in most cases in-sample tests have higher power,
and therefore, tend to be more credible than out-of-sample tests. Using similar arguments, Cochrane
(2008) provides evidence that favours in-sample tests in the context of stock return predictability.
Our economic evaluation focuses on the performance fee, ®, a US investor is willing to pay
for switching from one international strategy with FX risk to another. The fees are reported in
Table 3 for daily rebalancing, Table 4 for weekly rebalancing, and Table 5 for monthly rebalancing.
The tables display the economic value of each volatility and correlation specification relative to the
benchmark M LR model. In our calculations, we follow Marquering and Verbeek (2004) and Han

(2006) in setting a degree of relative risk aversion A\ = 6, which generates portfolio returns with

rate returns falls slightly from 0.99 for daily returns to 0.97 for weekly returns and stays constant at 0.97 for monthly
returns. The average 72 4 62 term falls much faster from 0.99 for daily returns to 0.95 for weekly returns and to 0.84
for monthly returns.
1
20The Numerical Standard Error is defined as: NSE = {% [7,/10 + 22;21 Ker (2) wj] } *, where I = 5,000 is the
number of iterations (beyond the initial burn-in of 1,000 iterations), 7 = 1,..., By = 500 lags is the set bandwidth,

z= B%z’ and @j is the sample autocovariance of the MCMC draws for each estimated parameter cut according to the

Parzen kernel Ker (z).
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reasonable mean and volatility. In Panel A of the Tables we report the results for CRRA utility
under the classical plug-in method. In Panel B, we allow for Bayesian learning only in volatilities
and correlations, but not in the mean. Panel C presents the results with full Bayesian learning as
we evaluate the CRRA utility under the Bayesian predictive density, thus accounting for parameter
uncertainty in the mean, volatilities and correlations. Panel A reports the results for an extensive
set of models, whereas Panels B and C focus on a smaller number of selected models. The primary
focus of our discussion below is the case of daily rebalancing.

In line with the evidence of, among others, West, Edison and Cho (1993), Fleming, Kirby and
Ostdiek (2001), and Della Corte, Sarno and Tsiakas (2008), we find that there is substantial economic
value associated with volatility timing. More importantly, however, we show that there is high
economic value specifically due to timing dynamic FX correlations over and above the economic
value of volatility timing. This result is a novel finding in this literature as we establish that for daily
FX returns, the dynamics of covariances are not exclusively driven by dynamic volatilities, but also
by dynamic correlations. Therefore, this is the first study to establish that correlation timing does
matter to an international investor facing FX risk. We illustrate this finding by the following results.

In terms of portfolio performance, switching from the static M LR to the CCC — GARCH
model gives a staggering fee of 386 annual basis points (bps). Then, switching from M LR to the
DCC — GARCH model raises the fee to 696 bps. This is also reflected in the Sharpe ratios (SR) of
the strategies: the SR rises from 1.08 for the M LR to 1.36 for CCC — GARCH, and then to 1.62
for DCC — GARCH.

Figure 3 demonstrates an alternative way of measuring the impact of correlation timing to a
dynamically optimizing investor by showing the cumulative wealth generated by the strategies. Over
the 31-year sample with daily rebalancing, for the plug-in (Bayesian) allocation, an initial investment
of $1 grows to $331 ($310) for MLR, $1,139 ($1,016) for CCC, and $3,064 ($2,520) for DCC.%!
The risk required to generate these returns appears to be quite reasonable. This is shown in Figure 4,
which plots 3-year rolling estimates of the Sharpe ratios that for the most part range between 0 and
3. Clearly, therefore, it is worth using high-dimensional multivariate models for dynamic correlations
as they generate significant economic value.

The exact value of the performance fees and the Sharpe ratios depends on the investor’s degree
of relative risk aversion, A. Since the tables focus on the case where A = 6, the fees can be high. If
we increase A, we should expect the fees and Sharpe ratios to be lower; as investors become more risk

averse they take less risk, and hence exploit less the correlation and volatility forecasts of a better

Tnvesting in the riskless asset (the yield of the US bond) generates a final wealth of $8.6. The large difference
between riskless investing and the benchmark static M LR model is due to the M LR’s optimal use of fluctuations in
the US and foreign bonds.
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model. Figure 5 illustrates an essential aspect of our findings by showing that the fees and Sharpe
ratios are consistently higher with dynamic correlations as RRA increases from A = 6 to A = 30.
Therefore, dynamic correlations are economically valuable even for large values of RRA in investor
preferences.

Table 3 uncovers another important finding, which justifies the choice of economic criteria in
assessing alternative specifications for dynamic correlations. A purely statistical analysis may con-
clude that the rich correlation structure of diagonal DCC models with asymmetric correlations leads
to improved performance (e.g., Cappiello, Engle and Sheppard, 2006).22 This is not the case in
evaluating correlation timing in the context of dynamic asset allocation strategies. The choice of
dynamic volatility specification (e.g., GARCH vs. EGARCH) or dynamic correlation specification
(e.g., DCC vs. ADCC) has little effect on the results. In our analysis, economic value is generated
by making volatilities and correlations dynamic, irrespective of their exact specification. As we will
see, this result holds for all three rebalancing frequencies we consider. Therefore, not only is the
investor much better off with dynamic correlations, but the simple (scalar symmetric) DCC model
with GARCH volatility is as good a model as any among the ones we consider. In our framework,
increasing the sophistication of the econometric specification does not enhance the economic value
of the simple DCC' model.

Our analysis has so far focused on daily rebalancing for which the case for correlation timing is
the strongest. We now turn to evaluating portfolio performance at the lower frequencies of weekly
and monthly rebalancing. Since our forecasting exercise remains one-step ahead, we re-estimate all
the models using weekly and monthly FX returns data. We begin with Table 4, which presents the
results for weekly rebalancing and demonstrates that as we move from M LR to CCC we generate a
performance fee of 158 bps, while the Sharpe ratio rises from 1.12 to 1.21. However, the DC'C model
now gives small incremental gains by slightly raising the SR to 1.28, while slightly lowering the fee
to 122 bps.?> This leads us to conclude that at the weekly frequency there is good economic value
in dynamic volatilities but little value in dynamic correlations. In other words, it is economically
valuable to have a dynamic covariance matrix; however, our strategies perform well even when
correlations are constant and hence the dynamics of covariances are governed exclusively by the
dynamics of volatilities. Furthermore, as shown in Table 5, at the monthly rebalancing there is
very little or no economic value in both volatility and correlation timing.?* Finally, the weakening

economic evidence on correlation and volatility timing at these lower frequencies is in line with the

22We can show this by computing the log-likelihood values or posterior model probabilities. Since we focus on the
economic value of the models, we do not report these statistical results, but they are available upon request.

23This apparent inconsistency of a strategy raising the Sharpe ratio while lowering the fee is particular to the CRRA
utility function and will be discussed in detail in the next section.

24This is in fact consistent with Della Corte, Sarno and Tsiakas (2008), who find that the CCC — GARCH model
generates little or no economic value for monthly FX strategies.
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diminishing persistence of correlations and volatilities as we move from the daily to the monthly

frequency.

6.3.1 The Effect of Parameter Uncertainty

The plug-in approach we have discussed so far takes the parameter estimates as true and ignores
estimation error. Intuitively, however, the more parameters we estimate the more uncertain we are
about the validity of our correlation and volatility forecasts. We address this concern by evaluat-
ing expected utility under the Bayesian predictive density, which reflects the posterior information
contained in the returns data and the investor’s prior beliefs, but does not depend on the parame-
ter estimates. We examine the effect of parameter uncertainty and Bayesian learning on the FX
strategies with daily rebalancing in Panels B and C of Table 3. In Panel B we allow for parameter
uncertainty only in the volatilities and correlations of daily returns, but not in their means. Panel
C shows the results with full Bayesian learning.

Our main finding here is that parameter uncertainty in second moments has little or no effect
on portfolio performance. Therefore, correlations and volatilities are estimated with high precision.
This is a robust result that holds for all rebalancing frequencies, and for which there is a simple
intuitive explanation: both volatilities and correlations are highly persistent and hence predictable,
and so it makes sense that parameter uncertainty will not play a prominent role for a one-step ahead
predictive horizon, irrespective of the frequency of the data.

It is also important to note that this is not the case for the first moments, which are notori-
ously difficult to estimate with high precision. Our results indicate that parameter uncertainty has a
stronger impact on the mean than on correlations and volatilities. The prevailing view in the interna-
tional finance literature is that exchange rates are not predictable, especially at short horizons, and
follow a random walk (e.g., Mark, 1995). Our results here suggest that the constant in the random
walk model for log-exchange rates (which is the same as the constant mean in the M LR model) is
hard to pin-point with great accuracy. This is particularly true for daily FX returns. For example,
the fee for the DC'C model falls from 696 in the plug-in case to 655 in the full Bayesian learning case,
whereas the Sharpe ratio falls from 1.62 to 1.58. As discussed in Barberis (2000), parameter uncer-
tainty makes investors more cautious by taking less risk and thus expecting a lower reward-to-risk
ratio. Since parameter uncertainty is an additional source of risk in asset allocation, investors will
optimally choose less risky portfolios, and thus enjoy lower fees and lower Sharpe ratios.?> At any
rate, despite the uncertainty over a large number of parameters, the economic gains from correlation

timing remain strong.

%5In the framework of Barberis (2000), the additional risk of parameter uncertainty implies investing more in the
riskless asset. In our case of multiple risky assets and allowing for negative weights, cutting the position on the risky
assets does not necessarily imply a larger position on the riskless asset.
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6.3.2 The Effect of Model Risk

We evaluate the impact of model risk on correlation timing by exploring whether portfolio perfor-
mance improves when combining the forecasts stemming from the large set of models we estimate.
We focus on the Bayesian Model Averaging (BM A) and Bayesian Model Winner (BM W) strategies,
which provide for dynamic weights evaluated ex ante. The BM A and BMW strategies are applied
on three universes of models: VOL is the universe of all nine GARC H-type univariate volatility
specifications we estimate under the simple (scalar symmetric) DCC model; CORR is the universe
of the five multivariate correlation specifications (CCC, DCC, DCClyjqq, ADCC, ADCClgiqq,) with
GARCH volatility; and FULL is the complete universe of all 46 models (including the benchmark
MLR).%

The economic value of combined forecasts is reported in Table 6, which assesses the impact of
model risk under the Bayesian predictive density. Therefore, we focus on the case of evaluating model
risk across forecast combinations while at the same time accounting for parameter uncertainty and
Bayesian learning. The results in Table 6 indicate that there is high economic value in BM A forecast
combinations and even higher value in the BMW strategy for daily rebalancing. For instance,
compared to the DCC — GARCH model, which under full Bayesian learning delivers a Sharpe
ratio of 1.58, the BM A — FULL combined strategy increases the Sharpe ratio to 1.73 and the
BMW — FULL raises it further to 1.81. However, accounting for model risk does not alter the
previous finding that dynamic correlations generate little or no economic value at lower frequencies.
In conclusion, therefore, accounting for model risk by forming combined forecasts delivers additional
economic value and makes the case for correlation timing at the daily rebalancing frequency more

robust.

6.3.3 Further Aspects of Asset Allocation

We have so far assessed the economic value of correlation timing in the FX market for an investor
who is uncertain about the parameter estimates and the model specification. This section discusses
two further aspects of the impact of dynamic return correlations on asset allocation: the effect of
transaction costs and the effect of the choice of utility function.

We begin with an examination of the role of transaction costs. If transaction costs are sufficiently
high, the period-by-period fluctuations in the dynamic weights of an optimal strategy will render
the strategy too costly to implement relative to the benchmark strategy. A simple way of addressing

this concern is by checking how much the performance fees decrease when we deduct a proportional

20Tn this paper, we focus on forecast combinations of alternative specifications of DCC models with GARCH
volatility. See Della Corte, Sarno and Tsiakas (2008) for the results on a forecast combination of GARCH and
stochastic volatility models on monthly FX returns; and Liu and Maheu (2008) for Bayesian model averaging across
univariate realized volatility models.
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transaction cost of 1 bps or 2 bps from the portfolio return ex post. We carry out this calculation
in each time period by first computing the optimal weights in the absence of any transaction costs.
We then deduct from the portfolio return a transaction cost that is proportional to the dollar value
traded in each risky asset. This approach ignores the fact that the dynamic portfolios are no longer
optimal in the presence of transaction costs but maintains simplicity and tractability in our analysis.
The results in Table 3 indicate that for daily rebalancing, the economic value of correlation timing
is fairly robust to transaction costs. For a proportional daily transaction cost of 1 bps (2 bps) the
performance fees decrease slightly from 386 bps to 349 (313) bps for CCC — GARCH, and from 696
bps to 637 (579) bps for DCC — GARCH.

In addition to computing performance fees net of transaction costs, we take a step further by

E_ as the minimum proportional cost that cancels

computing the break-even transaction cost, 75
out the utility advantage (and hence positive performance fee) of a given strategy. In comparing
a dynamic strategy with the static M LR strategy, an investor who pays a transaction cost lower
than 78F will prefer the dynamic strategy. The 72F values are expressed in basis points at the
rebalancing frequency. For daily rebalancing, Table 3 shows that the 72F values generally revolve
around 10 bps for constant correlation models and 11 bps for dynamic correlation models. Given
that the cost of portfolio rebalancing for large investors in the FX market is around 1 or 2 bps, we
can conclude that the economic value of correlation timing is robust to reasonable transaction costs
for daily rebalancing.

In evaluating portfolio performance with weekly and monthly rebalancing, we observe that cor-
relation timing may increase the Sharpe ratio, while decreasing the performance fee. This apparent
inconsistency is specific to the use of CRRA utility. For this utility function, the optimal weights do
depend on the mean-variance tradeoff, but the performance fees depend only on the portfolio returns
generated by the weights. Since we optimally use the forecasts of each strategy to maximize utility
(not the expected return of the portfolio), it is possible that a better strategy will generate portfolio
returns with higher Sharpe ratio but with both lower expected returns and lower volatility. In this
case, CRRA utility produces lower (or even negative) fees despite the higher Sharpe ratio.?”

This situation will not arise with quadratic utility, where the calculation of performance fees ex-
plicitly takes into account the mean-variance tradeoff. In fact, for weekly and monthly rebalancing,
CRRA and quadratic utility will generate portfolios with almost identical expected returns, volatil-
ities and Sharpe ratios; and yet, the performance fees will be very different across the two utility
functions. This is not the case for daily rebalancing, when CRRA utility generates portfolios with

much higher Sharpe ratios. Our analysis adopts CRRA utility because it is more general and does

2TRecall that the Sharpe ratio is an unconditional measure, which ignores higher moments.
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not suffer from the well-known shortcomings of quadratic utility.?® It is still, however, of considerable
interest to evaluate the robustness of our findings to quadratic utility because quadratic utility is
widely used and provides a high degree of analytical tractability in solving the dynamic allocation
problem.?’

Table 7 reports the evidence on portfolio performance of selected models with quadratic utility.
The results demonstrate that the CRRA and quadratic utility functions produce similar results, but
the value of correlation timing tends to be a bit more pronounced with CRRA utility, particularly for
daily rebalancing. The use of quadratic utility also confirms our main finding that correlation timing
is most valuable with daily rebalancing. At weekly and monthly frequencies, the incremental value
of dynamic correlations is small and dynamic volatilities are sufficient in capturing the dynamics of

covariances.

6.4 Summary of Results

In the context of dynamic asset allocation strategies, our results provide strong evidence establishing
the high economic value of timing short-horizon FX correlations. The value of correlation timing
is distinct from that of volatility timing in that dynamic correlations add considerable economic
gains to the case of dynamic volatilities with constant correlations. In short, we find that the eco-
nomic value of correlation timing: (i) remains high when accounting for parameter uncertainty and
Bayesian learning as investors are willing to accept only a slightly lower risk-return tradeoff; (ii) in-
creases when accounting for model risk by optimally forming combined forecasts based on Bayesian
Model Averaging; (iii) continues to be sizeable as RRA increases; (iv) remains largely unaffected
when specifying asymmetric correlations, rich correlation dynamics, and alternative volatility spec-
ifications; (v) is robust to reasonable transaction costs in the FX market; (vi) is substantially high
for daily rebalancing, but low to non-existent for weekly and monthly rebalancing; and finally (vii)

it is similarly strong whether we use CRRA or quadratic utility.

7 Conclusion

The empirical finance literature has long determined that asset return correlations are dynamic.
Therefore, accurate correlation forecasts are critical for investors’ optimal asset allocation. This has
motivated a long line of research dedicated to developing tractable multivariate volatility models.

Despite the interest in dynamic correlations, however, the economic value of correlation timing has

281f the utility function is quadratic, mean-variance analysis applies exactly and the allocation will not depend on
higher moments. A well known weakness of quadratic utility is that it exhibits increasing RRA with respect to wealth.

29Tn fact, the literature assessing the economic value of empirical models of asset returns predominantly uses quadratic
utility (e.g., West, Edison and Cho, 1993; Fleming, Kirby and Ostdiek, 2001; Marquering and Verbeek, 2004; Han,
2006; Della Corte, Sarno and Thornton, 2008; and Della Corte, Sarno and Tsiakas, 2008).
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not received as much attention as volatility timing. The justification for this partly lies on the
substantial difficulty in handling multivariate models for dynamic correlations. At the same time,
there appears to be a gap in the literature, as we know little about the portfolio implications of
dynamic correlations in asset returns.

This paper bridges this gap by providing a comprehensive evaluation of how dynamic return
correlations affect the optimal portfolio choice of risk-averse investors. We thus contribute to three
related literatures in international finance, empirical asset pricing and financial econometrics in the
following way. We design a new method for Bayesian estimation of the DCC model. Then, we use
the dynamic correlation forecasts to formally assess the economic value of correlation timing. Our
dynamic strategies invest in the FX market, and focus on the portfolio decision of an investor, who
is uncertain about the parameter estimates and the model specification.

Our findings establish that there is high economic value in timing FX correlations, in addition to
the substantial economic value in volatility timing. This result is robust to reasonable transaction
costs, which in FX trading are generally low. It only holds, however, when rebalancing at the daily
frequency since there is little or no economic value in timing FX correlations for weekly or monthly
rebalancing. We also show that the model with the simplest structure in dynamic correlations and
volatilities performs equally well as models with asymmetric correlations, richer correlation structure
or alternative volatility specifications. Despite its simplicity, therefore, the multivariate DCC model
is a powerful instrument in the practice of currency management. In the end, correlation timing does
matter to an international investor, and it pays to take dynamic FX correlations into consideration
in asset allocation strategies when rebalancing at daily frequency.

As this study is the first to comprehensively assess the economic value of correlation timing,
there is scope to potentially extend our analysis in several directions. For instance, given that our
investigation is computationally demanding, it is perhaps worth exploring ways that make feasible
the out-of-sample evaluation of dynamic correlation models in the context of asset allocation with
Bayesian learning. A second direction is to extend the econometric models and the asset allocation
to explicitly account for higher-order moments, such as skewness and kurtosis. Finally, it would be of
interest to academics and practitioners alike to evaluate the effect of correlation timing for different

asset classes, including stocks and bonds. We leave these extensions for future research.
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Appendix A: The Set of Univariate Models for Volatility Timing

We estimate the multivariate correlation models under nine univariate volatility specifications:

1. GARCH: Bollerslev (1986):

2 _ 2 2
Oy =wi +aiugy g+ B07 44

2. Absolute Value GARCH (AVGARCH: Taylor, 1986):

Oip = wi + oglui—1| + B0 1.
3. Nonlinear GARCH (NARCH: Higgins and Bera, 1992):

oip =wi + agluip1]" + Bio, .
4. Exponential GARCH (EGARCH: Nelson, 1991):

Ujt—1

-2
Oit—1 T

In (07,) = witaiis—1+6i (Jeig—1] — E[leidl))+8;In(07,_1);  €ip—1 = ;o Elleig

5. Threshold GARCH (ZARCH: Zakoian, 1994):
oit = wi + o (|uii—1] — kit g—1) + Bi0i 1.
6. GJR-GARCH (Glosten, Jagannathan and Runkle, 1993):
U?,t =w; + o (|uie—1] — /siu@t_l)? + BiU?,tfr
7. Asymmetric Power GARCH (APGARCH: Ding, Engle and Granger, 1993):
orp = wi +ai (Juig1| — miuig—1)" + 8,07, 1
8. Asymmetric GARCH (AGARCH: Engle, 1990):
ait = w; + a; (U1 + K)° + 5iU?,t—1-

9. Nonlinear Asymmetric GARCH (NAGARCH: Engle and Ng, 1993):

2 2 2
O = Wi + @ (Wit—1 + Kioig)” + Biai,t_y
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Appendix B: Bayesian MCMC Estimation

We perform Bayesian MCMC estimation by constructing a Markov chain whose limiting distribution
is the target posterior density. This Markov chain is a Gibbs sampler in which all parameters are
drawn sequentially from their full conditional posterior distribution. The chain is then iterated
and the sampled draws, beyond a burn-in period, are treated as variates from the target posterior
distribution. The MCMC algorithm for three representative multivariate models (M LR, CCC,

ADCCljqq) is summarized below. All other specifications are special cases of one of these models.

The Multivariate Linear Regression (M LR) Algorithm

In the M LR model, we need to estimate § = {u, X'}, where p is the vector of unconditional means,
and Y1 is the constant precision matrix defined as the inverse of the covariance matrix. Given
N assets, for u we assume a Normal prior N(m, M), where m = Oy and M = Iy. For Y1 we
specify a Wishart prior Wy (s,S), with scale matrix S = Iy, degrees of freedom s = N + 4, and
mean F [2*1] = sIy. The simple Gibbs algorithm is summarized below (for more details, see Koop,
2003):

1. Initialize ¥71.

2. Sample p |y, X! ~ Ny (W,M), where M = [Mfl +3¥ 1w (I’I)]_l,

andm =M [M 'm+ (57! @ I') vec (y)].

3. Sample 7! [y, u ~ Wi (5,5), where s =T+ sand S = [S™' + (y — p)’ (y — ,u)]_l.

4. Go to step 2 and iterate 100,000 times beyond a burn-in of 20, 000 iterations.

The Constant Conditional Correlation (CCC) Algorithm

In the CCC model with GARC H volatility (Bollerslev, 1990) we need to estimate 6 = {p, 91,§_1},
where p is the vector of unconditional means, 1 = {w;, o, 5;} are the conditional variance parameters
for each of i+ < N assets, and R is the inverse of the constant correlation matrix. The prior for
& is the same as for the M LR model above. For 8; we specify: w ~ LogN (w, W), with w = —4.8
and W = 4; a ~ Beta(a, A), with ¢ = 2 and A = 40; and § ~ Beta(b, B), with b = 40 and B = 4.
These hyperparameters imply prior means: E [w] = 0.06, E [@] = 0.05 and F [3] = 0.89, and hence
E [gﬂ — 1. For B | we assume a Wishart prior Wy (s, S), with scale matrix S = Iy and degrees of
freedom s = N + 4. The CCC algorithm is summarized below:

1. Initialize p and transform the data into u; = (y¢ — p).

2. For each univariate volatility process, sample the variance parameters 61 from their full con-
ditional posterior density: 6; | v, u,ﬁfl. This posterior density is not available analytically.
We compute the log-likelihood of the transformed data w; as a function of 6; and then we
optimize the log-posterior. We generate a proposal from a t-distribution ¢ (m, V,§), where m
is the mode, V' is the scaled inverse of the negative Hessian and £ is a tuning parameter. The
proposal is then accepted according to the independence chain Metropolis-Hasting algorithm
(e.g., Chib and Greenberg, 1995).
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3. Given the 6; draws from Step 2, we form the diagonal volatility matrix D; and transform the
data into z; = D, Yu, = RY2¢,. Then, we sample R from a Wishart posterior distribution
as in Step 3 of the M LR algorithm.

4. Sample the vector of unconditional means p | y, 01, R using a precision-weighted average of
a set of normal priors and the normal likelihood conditional on 6; and E_l. Then, update the

data uy = (y; — p).

5. Go to step 2 and iterate 5,000 times beyond a burn-in of 1,000 iterations.

We design similar algorithms for alternative univariate volatility specifications.

The Asymmetric Dynamic Conditional Correlation (ADCCy;,,) Algorithm

The asymmetric diagonal ADCCy;,y model with GARCH volatility requires estimation of the pa-
rameter matrix 6 = {u, 01,02}, where p is the vector of unconditional means, 01 = {w;, a4, 3;} are
the GARC H parameters for each ¢ < N asset, and 0y = {I', A, II} are diagonal N x N matrices. In
this model, we specify priors for p as in the M LR model and priors for 61 = {w;, «;, 5;} as in the
CCC model above. For 02, we specify multivariate Beta priors: I' ~ Beta (1, E), A ~ Beta (9,A),
and IT ~ Beta (w,II), where we set the scale matrices I' = A = II = Iy and the degrees of freedom
parameters ¥ = § = m = N + 1. For all models, we set the hyperparameters to reasonable values,
but the estimation algorithms are robust to prior specification and initial values. The ADCCy;qq

algorithm is summarized below:

1. Initialize u and transform the data into uy = (y; — ) .

2. For each univariate volatility process, sample the conditional variance parameters 6, from their
full conditional posterior density: 61 | u, u, 02 following Step 2 of the CCC algorithm described
above. Use the 01 parameter estimates to form the diagonal volatility matrix D; and transform
the data into z; = D[lut = Riﬁst.

3. Sample the conditional correlation parameters fs from their full conditional posterior density:
0y | z,p,61. This posterior density is not available analytically. Hence, we compute the log-
likelihood of the transformed data z; as a function of #5 and then we optimize the log-posterior.
We generate a proposal from a t-distribution ¢ (m, V, &), where m is the mode, V' is the scaled
inverse of the negative Hessian and £ is a tuning parameter. The proposal is then accepted
according to the independence chain Metropolis-Hasting algorithm (e.g., Chib and Greenberg,
1995).

4. Sample the vector of unconditional means p | y, 01,02 using a precision-weighted average of a

set of normal priors and the normal likelihood conditional on 67 and 6.

5. Go to step 2 and iterate 5,000 times beyond a burn-in of 1,000 iterations.
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Appendix C: The Brandt et al. (2005) Solution to the Dynamic
Asset Allocation Problem

In what follows we present the solution to the intertemporal asset allocation problem proposed
by Brandt, Goyal, Santa-Clara and Stroud (2005). This is a simulation-based method for solving
discrete-time portfolio choice problems, which allows us to directly use the correlation and volatility
forecasts from the models in computing the dynamic weights. This method also makes it possible to
extend our analysis to a Bayesian setting, where the conditional expectation is evaluated under each

model’s posterior predictive density.

Step 1: Expanding the Value Function

We can greatly simplify the problem by expanding the value function in a Taylor series around W, R/
and solve for the optimal weights. For the CRRA utility function, the solution to a second-order

expansion of the value function is as follows:

o~ % {Et [zptﬂ (Zos1) ((Rt+1 - Rf) (Rm - Rf)/ﬂ }_1 x E, [wm (Zis1) (Rt+1 - Rf)] .

This approximate solution for the optimal weights involves the conditional expectation of the second
moment matrix (the variance-covariance matrix of demeaned excess returns) and the risk premium.

A fourth order expansion of the value function gives the following solution:

o~ % {Et [wt-s—l (Zi11) <<Rt+1 — Rf> (Rt+1 - Rf)'>] }_1 x B} [¢t+1 (Z41) <Rt+1 — Rf)]
%Wfa% (Wir’) B [wm (Z41) (ot (B - Rf>)2 (ee1 - Rfﬂ
+éWt484U (Wir!) B [wm (Zes) () (B - Rf))g (Reer = 1) } ’

where U (W) = W22 [0U (W) = WA > 0, 82U (W) = AW~ <0, 30 (W) = A(A+ 1) W42 >
0, and O*U (W) = =AM+ 1) (A +2) W-A3) < 0. Tt is straightforward to solve this implicit ex-
pression for the optimal weights in practice. We start by computing the portfolio weights for the
second-order expansion of the value function and take this to be an initial guess for the optimal
weights. We then enter this guess into the right-hand side of the fourth-order expansion, obtain a

new solution and repeat for a few iterations until the weights do not change anymore.

Step 2: Simulate Sample Paths

We use the multivariate models to simulate forward a large number of hypothetical sample paths for

the vector of returns as follows:
yt::u’t—’_ztgta €tNN(O7[N>7

where at each time period ¢ we sample m = 1, ..., M = 1,000 artificial draws (simulated paths) from
the distribution of ; using the one-step ahead forecasts for p, and ;. We denote the realization of

the returns and state variables at time s along the m path as Y," = (R.", ZI"), where Z;11 = Ry.
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Step 3: Recursive Solution

We solve recursively backwards for the optimal portfolio weights at each date t for each simulated
sample path m assuming that the portfolio weights from time ¢ + 1 to T — 1 have already been

computed and are denoted by Ty, s =¢,...,T — 1. We approximate terminal wealth as follows:

T-1
T woR! - YA
Wr = W,R 52111 <x; (RS+1 R ) YR )

Consider now the problem of solving for the current portfolio weights given the current wealth

W™ and the realization of the state variables Z;". The weights for the second order expansion are:

T-1

-1
v ~ <—Et {aQU (’WT) H (f; (Rs+1 - Rf) - Rf)2 (Rt+1 - Rf> <Rt+1 - Rf)’} Wt)
s=t+1

oU (WT) I1 (f; (Rs+1 = Rf) + Rf) <Rt+1 - Rf)

s=t+1

XEt

Similarly, for the fourth-order expansion the weights are given by:

N -1
v~ (Et {a2U (WT TH (3; (RS+1 - Rf) + Rf>2 (Rt+1 - Rf> (Rm . Rf>/} Wt>

s=t+1
«E, |oU (WT) TH1 (@; <R5+1 - Rf) + Rf> (m+1 - Rf)
s=t+1
3 00 () TT (2 (e #0) 4 20)' (4 (e )" (e = ) [
+éEt o'U (WT) 2:1 (:c (RsH ~R! ) + R )4 (x; (Rt+1 —R! ))3 (RHl _R! ) Wi

Recursive Algorithm

1. Solve for the weights recursively backwards starting at 1" — 1.

(a) solve for 2nd order Taylor series expansion, and

(b) plug into 4th order Taylor series expansion.

2. Simulate the return sample paths using the conditional moments from the set of models we

have estimated.

3. Approximate the terminal wealth for each sample path.

4. Go to Step 1 and iterate.
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Table 1

Descriptive Statistics for Daily Exchange Rate Returns

Panel A: Percent Returns

USD/GBP USD/EUR USD/CHF USD/JPY
Mean —0.0004 0.0070 0.0095 0.0117
Std Dev 0.620 0.653 0.736 0.664
Min —7.59 —5.87 —5.83 —4.15
Mazx 4.64 4.14 5.17 6.40
Skewness —0.356 —0.005 0.083 0.609
Kurtosis 9.78 6.02 6.25 9.27

Panel B: Correlation Matrix

USD/GBP USD/EUR USD/CHF USD/JPY
USD/GBP 1.00 0.557 0.495 0.336
USD/EUR 0.557 1.00 0.819 0.491
USD/CHF 0.495 0.819 1.00 0.543
USD/JPY 0.336 0.491 0.543 1.00

The table summarizes the descriptive statistics for the daily percent exchange rate returns. The returns are

computed as the first difference of log-exchange rates. The data range from January 2, 1976 to December 29, 2006 for

a sample size of 8,069 daily observations.
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Table 2
Posterior Means for the ADCCy;,,—GARCH Model

Panel A: Daily FX Returns

7 w Q I3 ~y 0 T
USD/GBP —0.0004 0.0065 0.9146  0.0705 0.9811 0.1534 0.1324
(0.00003) (0.00001)  (0.00006)  (0.00005) (0.00001)  (0.00005)  (0.00011)
USD/EUR 0.0071 0.0042  0.9278  0.0651 0.9780  0.1979  0.0479
(0.00003) (0.00001)  (0.00005)  (0.00004) (0.00001)  (0.00003)  (0.00013)
USD/CHF 0.0095 0.0053  0.9360 0.0561 0.9792  0.1929  0.0379
(0.00003) (0.00001)  (0.00005)  (0.00004) (0.00001)  (0.00003)  (0.00013)
USD/JPY 0.0117 0.0049  0.9256  0.0667 0.9872  0.1439  0.0351
(0.00003) (0.00001)  (0.00005)  (0.00004) (0.00001)  (0.00003)  (0.00014)
Panel B: Weekly FX Returns
USD/GBP —0.0026 0.0622  0.8945 0.0745 0.9231  0.2135 0.2676
(0.00014) (0.00015)  (0.00015)  (0.00011) (0.00007)  (0.00014)  (0.00022)
USD/EUR 0.0341 0.0756  0.8770  0.0903 0.9423  0.2558  0.0908
(0.00014) (0.00027)  (0.00021)  (0.00013) (0.00005)  (0.00012)  (0.00018)
USD/CHF 0.0462 0.0937  0.8919  0.0743 0.9519  0.2548  0.0826
(0.00016) (0.00031)  (0.00019)  (0.00012) (0.00004)  (0.00009)  (0.00019)
USD/JPY 0.0578 0.0886  0.8895  0.0734 0.9809 0.1312  0.1602
(0.00015) (0.00027)  (0.00019)  (0.00011) (0.00002)  (0.00008)  (0.00020)
Panel C: Monthly FX Returns
USD/GBP —0.0175 0.1051  0.9312  0.0583 0.8594  0.1911  0.1600
(0.00064) (0.00087)  (0.00020)  (0.00017) (0.00041)  (0.00036)  (0.00074)
USD/EUR 0.1383 0.2889  0.9270  0.0470 0.8370  0.2946  0.2760
(0.00067) (0.00244)  (0.00027)  (0.00016) (0.00030)  (0.00034)  (0.00076)
USD/CHF 0.1907 0.3592  0.9026 0.0714 0.8779  0.2950  0.2286
(0.00072) (0.00276)  (0.00031)  (0.00021) (0.00024)  (0.00030)  (0.00067)
USD/JPY 0.2397 0.4780  0.9019  0.0592 0.9631  0.0652 0.3152
(0.00069) (0.00233)  (0.00028)  (0.00020) (0.00083)  (0.00025)  (0.00064)

The table presents the Bayesian MCMC estimates of the posterior means for the parameters of the diagonal
asymmetric ADCC gjqg-GARCH model. This is the most general multivariate correlation specification we consider in
our analysis. The model is applied on daily, weekly and monthly percent exchange rate returns for the sample period
of January 2, 1976 to December 29, 2006. The numbers in parenthesis indicate the Numerical Standard Error (NSE).
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Table 3
Portfolio Performance with Daily Rebalancing

Panel A: Plug-In Method

BE

Model ty o SH (T(Eo) (21) (7(22) !
Static Benchmark
MLR 18.8 11.2 1.08
Volatility Timing
CCC - GARCH 22.7 11.8 1.36 386 349 313 10.5
CCC - AVGARCH 22.1 120 1.28 327 281 234 7.0
CCC - NARCH 224 119 1.32 356 314 271 8.4
CCC - EGARCH 229 121 1.34 404 357 309 8.5
CCC—-ZARCH 226 121 1.32 377 331 284 8.1
CcCC—-GJR—-GARCH 22.8 11.8 1.37 399 363 326 10.9
CCC —-— APGARCH 227 119 1.34 383 341 299 9.1
CCC — AGARCH 23.0 11.8 1.37 412 375 338 11.2
CCC - NAGARCH 23.0 11.8 1.38 416 380 343 11.3
Correlation and Volatility Timing
DCC — GARCH 25.8 11.7 1.62 696 637 579 11.9
DCClyiqg — GARCH 25.7 11.7 1.62 691 629 567 11.1
ADCC — GARCH 25.7 11.7 1.62 691 633 574 11.8
ADCCyiqy — GARCH 25.8 11.7 1.62 694 631 569 11.1

(continued)
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Table 3 (continued)
Portfolio Performance with Daily Rebalancing

Panel B: Bayesian Learning in Volatilities and Correlations

Model o SR @ o ® L BE
Hp P (r=0) (r=1) (r=2)

Static Benchmark
MLR 18.8 11.2 1.08

Volatility Timing
CCC - GARCH 22.7 11.8 1.36 38 349 313 10.5

Correlation and Volatility Timing

DCC — GARCH 257 11.7 1.62 692 633 575 11.8
Panel C: Full Bayesian Learning in the Mean, Volatilities and Correlations
Model Hop o, SR ) ) P rBE

(r=0) (r=1) (r=2)

Static Benchmark
MLR 18.5 10.8 1.08

Volatility Timing
CcCC - GARCH 223 114 1.36 371 334 296 9.9

Correlation and Volatility Timing
DCC — GARCH 25.2 11.6 1.58 665 596 536 11.0

The table shows the portfolio performance of dynamic models against the static benchmark for daily rebalancing.
MLR is the multivariate linear regression model, CCC' is the constant conditional correlation model, and DCC is the
dynamic conditional correlation model. The annualized percent mean, volatility and Sharpe ratio of each portfolio are
denoted by Hps Tp and SR respectively. The dynamic strategies use the maximum expected utility rule to build a
portfolio by investing in five bonds from the US, UK, Germany, Switzerland and Japan and using the four exchange
rate forecasts to convert the portfolio return in US dollars. Panel A uses the plug-in estimates of the mean, volatility
and correlation forecasts, Panel B evaluates expected utility using the volatility and correlation forecasts from the
predictive density, and Panel C accounts for full Bayesian learning. The performance fee (®) denotes the amount an
investor with CRRA utility and a degree of relative risk aversion equal to 6 is willing to pay for switching from MLR to
one of the dynamic models. The performance fees are expressed in annual basis points and are reported for three levels

BE

of proportional transaction costs 7 = {0, 1, 2} bps. The break-even transaction cost 7 is defined as the minimum

daily proportional cost that cancels out the utility advantage of a given strategy and is expressed in daily basis points.
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Table 4
Portfolio Performance with Weekly Rebalancing

Panel A: Plug-In Method

BE
Model o o, SR P L T
Static Benchmark
MLR 20.6 12.3 1.12
Volatility Timing
CCC —-GARCH 22.2 128 1.21 158 150 143 19.9
CCC - AVGARCH 220 13.3 1.15 127 117 108 13.8
CCC - NARCH 224 13.0 1.20 169 161 153 20.0
CCC - EGARCH 22.3 135 1.15 156 144 133 13.8
CCcC—-ZARCH 22.2 135 1.14 144 134 124 14.1
CccC-GJR—-GARCH 22.3 129 1.20 161 153 145 20.4
CCC - APGARCH 22.8 133 1.20 205 195 185 20.8
CCC - AGARCH 224 13.0 1.21 176 167 159 20.9
CCC - NAGARCH 224 13.0 1.21 174 166 157 20.8
Correlation and Volatility Timing
DCC — GARCH 21.7 11.7 1.28 122 113 105 14.4
DCCyiqg — GARCH 22.0 121 1.26 144 132 119 11.7
ADCC — GARCH 21.7 11.7 1.28 121 113 104 14.3
ADCCyiqg — GARCH 227 125 1.28 209 194 180 14.4

(continued)
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Table 4 (continued)
Portfolio Performance with Weekly Rebalancing

Panel B: Bayesian Learning in Volatilities and Correlations

Model o SR @ o ® L BE
Hp P (r=0) (r=1) (r=2)

Static Benchmark
MLR 20.6 12.3 1.12

Volatility Timing
CCC - GARCH 22.2 128 1.21 155 148 141 19.9

Correlation and Volatility Timing

DCC — GARCH 21.7 116 1.28 119 110 102 14.2
Panel C: Full Bayesian Learning in the Mean, Volatilities and Correlations
Model Hop o, SR ) ) P rBE

(r=0) (r=1) (r=2)

Static Benchmark
MLR 20.5 12.1 1.12

Volatility Timing
CcCC - GARCH 220 125 1.21 153 146 138 19.9

Correlation and Volatility Timing
DCC — GARCH 21.5 114 1.27 116 107 100 14.5

The table shows the portfolio performance of dynamic models against the static benchmark for weekly rebalancing.
MLR is the multivariate linear regression model, CCC' is the constant conditional correlation model, and DCC is the
dynamic conditional correlation model. The annualized percent mean, volatility and Sharpe ratio of each portfolio are
denoted by Hps Tp and SR respectively. The dynamic strategies use the maximum expected utility rule to build a
portfolio by investing in the five bonds from the US, UK, Germany, Switzerland and Japan and using the four exchange
rate forecasts to convert the portfolio return in US dollars. Panel A uses the plug-in estimates of the mean, volatility
and correlation forecasts, Panel B evaluates expected utility using the volatility and correlation forecasts from the
predictive density, and Panel C accounts for full Bayesian learning. The performance fee (®) denotes the amount an
investor with CRRA utility and a degree of relative risk aversion equal to 6 is willing to pay for switching from MLR to
one of the dynamic models. The performance fees are expressed in annual basis points and are reported for three levels

BE 5 defined as the minimum

of proportional transaction costs 7 = {0, 1, 2} bps. The break-even transaction cost 7
weekly proportional cost that cancels out the utility advantage of a given strategy and is expressed in weekly basis

points.
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Table 5
Portfolio Performance with Monthly Rebalancing

Panel A: Plug-In Method

BE

Model P o, SR 2 Wby (;32) T
Static Benchmark
MLR 194 14.0 0.90
Volatility Timing
CCC - GARCH 175 11.6 0.92 —160 —-160 —160 —
CcCC - AVGARCH 17.8 12.1 0.91 —137 —137 -—137 —
CCC - NARCH 176 11.8 0.92 —145 —145 —145 —
CCC - FGARCH 182 12,5 091 -97 —-98 98 —
CCC—-ZARCH 177 12.0 0.91 —142 —142 —142 —
CcCC—-GJR—-GARCH 174 11.6 0.91 —-169 —-169 —170 —
CCC - APGARCH 17.6 11.7 0.92 —145 —145 —145 —
CCC - AGARCH 172 11.3 0.92 —182 —182 -—183 —
CCC - NAGARCH 175 11.5 0.93 —154 —154 —155 —
Correlation and Volatility Timing
DCC — GARCH 17.3 10.7 0.98 —172 —-172 —-172 —
DCClyiqg — GARCH 174 11.1 0.96 —163 —164 —165 —
ADCC — GARCH 174 10.9 0.98 —162 —-162 —163
ADCClyiqg — GARCH 176 11.5 0.94 —149 —151 —153 —

(continued)
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Table 5 (continued)
Portfolio Performance with Monthly Rebalancing

Panel B: Bayesian Learning in Volatilities and Correlations

Model o SR P ) ¢ TBE
Hp P (r=0)  (r=1) (=2

Static Benchmark
MLR 19.4 14.0 0.90

Volatility Timing
CCC - GARCH 174 11.5 0.92 —164 —164 —165 —

Correlation and Volatility Timing

DCC — GARCH 172 10.7 0.98 —-176 —-176 —177 —
Panel C: Full Bayesian Learning in the Mean, Volatilities and Correlations
Model L o, SR i) ) P rBE

(r=0) (r=1) (r=2)

Static Benchmark
MLR 19.2 13.8 0.90

Volatility Timing
CcCC —-GARCH 174 114 0.92 —-167 —-167 —167 —

Correlation and Volatility Timing

DCC - GARCH 17.0 10.5 0.97 —181 —-182 —182 —

The table shows the portfolio performance of dynamic models against the static benchmark for monthly rebalancing.
MLR is the multivariate linear regression model, CCC' is the constant conditional correlation model, and DCC is the
dynamic conditional correlation model. The annualized percent mean, volatility and Sharpe ratio of each portfolio are
denoted by Hps Tp and SR respectively. The dynamic strategies use the maximum expected utility rule to build a
portfolio by investing in five bonds from the US, UK, Germany, Switzerland and Japan and using the four exchange
rate forecasts to convert the portfolio return in US dollars. Panel A uses the plug-in estimates of the mean, volatility
and correlation forecasts, Panel B evaluates expected utility using the volatility and correlation forecasts from the
predictive density, and Panel C accounts for full Bayesian learning. The performance fee (®) denotes the amount an
investor with CRRA utility and a degree of relative risk aversion equal to 6 is willing to pay for switching from MLR to
one of the dynamic models. The performance fees are expressed in annual basis points and are reported for three levels

BE 5 defined as the minimum

of proportional transaction costs 7 = {0, 1, 2} bps. The break-even transaction cost T
monthly proportional cost that cancels out the utility advantage of a given strategy and is expressed in monthly basis

points.
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Table 6
The Economic Value of Combined Forecasts with Bayesian Learning

Panel A: Daily Rebalancing

Model Combination Hop o, SR d ) P TBE
(r=0) (r=1) (r=2)
BMA—-VOL 24.2 10.6 1.65 568 496 424 7.9
BMA - CORR 25.1 11.6 1.58 653 592 530 10.6
BMA—-FULL 24.0 10.0 1.73 554 477 401 7.2
BMW —VOL 24.8 104 1.73 631 447 262 3.4
BMW — CORR 25.3 11.5 1.60 664 583 503 8.2
BMW — FULL 23.8 9.4 181 539 298 57 2.2
Panel B: Weekly Rebalancing
BMA—-VOL 215 11.2 1.31 112 104 96 13.4
BMA - CORR 21.8 115 1.31 140 131 122 15.8
BMA - FULL 21.5 11.1 1.33 117 109 100 13.5
BMW —VOL 214 11.2 1.30 100 75 50 4.0
BMW — CORR 22.0 11.2 1.36 162 149 136 12.4
BMW — FULL 22.0 10.6 1.44 174 138 101 4.8
Panel C: Monthly Rebalancing
BMA—-VOL 17.0 10.6 0.97 —187 —187 —187 —
BMA - CORR 17.1 10.5 0.98 172 —-172 —172 —
BMA — FULL 17.1 10.5 0.98 —180 —180 —180 —
BMW —VOL 17.4 10.5 1.01 —150 —153 —155 —
BMW — CORR 17.4 103 1.03 —148 —148 —148 —
BMW — FULL 18.2 10.6 1.08 —-63 —-67 -T2 —

The table assesses the impact of model risk on correlation timing by presenting the portfolio performance of
combined forecasts. Expected utility is evaluated under the predictive density thus accounting for Bayesian learning.
BMA denotes Bayesian Model Averaging and BMW Bayesian Model Winner, which are applied on three universes of
models: VOL is the universe of all GARCH-type univariate volatility specifications under the scalar symmetric DCC
model; CORR is the universe of all multivariate correlation specifications (CCC and the four DCC specifications) with
GARCH volatility; and FULL is the complete universe of all 46 model specifications (including the benchmark MLR).
The annualized percent mean, volatility and Sharpe ratio of each portfolio are denoted by Hps Tp and S R respectively.
The performance fee (®) denotes the amount an investor with CRRA utility and a degree of relative risk aversion
equal to 6 is willing to pay for switching from MLR to one of the dynamic forecast combinations. The performance fees
are expressed in annual basis points and are reported for three levels of proportional transaction costs 7 = {O, 1, 2}

BE

bps. The break-even transaction cost T is defined as the minimum proportional cost that cancels out the utility

advantage of a given strategy and is expressed in basis points at the rebalancing frequency.
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Table 7
Portfolio Performance of Selected Models with Quadratic Utility

Panel A: Daily Rebalancing

BE
Model ty op  SH (T(Eo) (721) (722) !
Plug-in case
MLR 19.9 13.3 0.99
CCC —-GARCH 24.0 145 1.19 305 258 211 6.5
DCC - GARCH 275 15.7 1.32 547 469 392 7.0
Full Bayesian Learning
MLR 19.7 13.1 0.99
CCC —-GARCH 232 146 1.13 230 184 139 5.0
DCC - GARCH 26.7 15.8 1.26 467 390 313 6.1

Panel B: Weekly Rebalancing

Plug-in case

MLR 206 123 1.12

CCC - GARCH 222 128 1.21 129 121 114 17.3
DCC — GARCH 21.7 11.6 1.28 163 154 146 19.1
Full Bayesian Learning

MLR 204 121 1.12

CcCC -GARCH 22.0 125 1.21 127 120 112 16.9
DCC — GARCH 21.5 114 1.27 160 152 148 19.2

Panel C: Monthly Rebalancing

Plug-in case

MLR 19.2 139 0.90

CCC —-GARCH 174 11.5 0.92 10 10 10 9.2
DCC - GARCH 172 10.6 0.98 51 51 51 11.6
Full Bayesian Learning

MLR 19.1 13.7 0.90

CcCC —-GARCH 175 11.8 0.91 4 4 4 —

DCC - GARCH 18.3 11.0 0.96 35 35 35 9.5

The table evaluates the portfolio performance of selected models under quadratic utility and compares the plug-in
case with full Bayesian learning. MLR is the multivariate linear regression model, CCC' is the constant conditional
correlation model, and DCC is the scalar symmetric dynamic conditional correlation model. The annualized percent
mean, volatility and Sharpe ratio of each portfolio are denoted by Hps Op and SR respectively. The dynamic portfolio
strategies invest in five bonds from the US, UK, Germany, Switzerland and Japan and use the four exchange rate
forecasts to convert the portfolio return in US dollars. The performance fee (®) denotes the amount an investor with
quadratic utility and a degree of relative risk aversion of 6 will pay to switch from MLR to one of the dynamic models.
The performance fee is expressed in annual basis points and is reported for proportional transaction costs 7 = {0, 1,2}

BE

bps. The break-even transaction cost T is the minimum proportional cost that cancels out the utility advantage of

a strategy and is expressed in basis points at the rebalancing frequency.
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Figure 1: The daily volatility forecasts for the four exchange rate return series using the simple
(scalar symmetric) DCC-GARCH model.
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DCC—-GARCH: Correlation (USD/GBP, USD/EUR)
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Figure 2: The daily correlation forecasts among the four exchange rate return series using the simple

(scalar symmetric) DCC-GARCH model.
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Plug—In Daily Allocation

3200

DCC: Correlation and Volatility Timing

2400

CCC: Volatility Timing

MLR: Static Benchmark

Cumulative Wealth
1600

o \/"“‘r’

2 -t

o -

st

< ~ — — — e e e r =TT T -

o I I I I .7=—=‘—="f:T*E’n‘ci‘:‘n\/V‘niwriTﬁanrinrin " " " " " " " "
1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007

Bayesian Daily Allocation

o

o

~N

M

DCC: Correlation and Volatility Timing

2400

CCC: Volatility Timing

MLR: Static Benchmark

Cumulative Wealth
1600

0 400 800

— _ =

1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007

Figure 3: The cumulative wealth of dynamic strategies with daily rebalancing. Initial wealth is $1
growing at the portfolio return. MLR is the benchmark model with static volatilities and correlations;
CCC has dynamic GARCH volatilities, but constant correlations; and DCC has dynamic (scalar
symmetric) correlations and GARCH volatilities. The top panel is for plug-in allocation and the
bottom panel for Bayesian allocation. All strategies are evaluated for a coefficient of relative risk
aversion equal to 6. The figure displays the case of zero transaction costs.
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Rolling Sharpe Ratio for Daily Plug—In Allocation
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Figure 4: The Sharpe ratio of dynamic strategies with daily rebalancing. The Sharpe ratios are
calculated using a rolling 3-year window. MLR is the benchmark model with static volatilities and
correlations; CCC has dynamic GARCH volatilities, but constant correlations; and DCC has dynamic
(scalar symmetric) correlations and GARCH volatilities. The top panel is for plug-in allocation and
the bottom panel for Bayesian allocation. All strategies are evaluated for a degree of relative risk

aversion equal to 6. The figure displays the case of zero transaction costs.
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Fees: Plug—In Fees: Bayesian Learning
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Figure 5: The performance of dynamic strategies with respect to the degree of relative risk aversion
for daily rebalancing. MLR is the benchmark model with static volatilities and correlations; CCC
has dynamic GARCH volatilities, but constant correlations; and DCC has dynamic (scalar symmet-
ric) correlations and GARCH volatilities. The figure shows the performance fees for plug-in asset
allocation (upper left panel), the performance fees for Bayesian allocation (upper right panel), the
Sharpe ratios for plug-in allocation (lower left panel), and the Sharpe ratios for Bayesian allocation
(lower right panel). The strategies are evaluated for a degree of relative risk aversion ranging from
6 to 30. The figure displays the case of zero transaction costs.
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